REVIEWS-LETTERS-REPORTS
VIRTUALINSTRUMENTATIONANDDISTRIBUTEDMEASUREMENTSYSTEMS
ViktorSmieˇsko—KarolKov´aˇc
∗
Thedevelopmentanduseofprogrammablemeasurementsystemshavebeenwidelyexplored.Thepossibilityofmodifying
themeasurementproceduresimplybychangingthealgorithmexecutedbythecomputer-basedarchitecturewithoutreplacingthehardwarecomponentsmakestheexperimentalactivityeasier.Virtualmeasurementsystemshavebeenintroducedtosimplifythedesign,implementationanduseofprogrammablemeasurementsystemsbyadoptingavisualinterface.Networkinghasalsobeenintroducedsuccessfullyinmeasurementtointerconnectdifferentinstrumentsanddataprocessingsitesintoadistributedmeasurementsystem(DMS).IndustriesthatdevelopanduseDMSaremigratingawayfromproprietaryhardwareandsoftwareplatformsinfavourofopensystemsandstandardizedapproaches.
Keywords:virtualinstrumentation,distributedmeasurementsystem,remoteandnetworkedmeasurement,intercon-nectbuses.
1INTRODUCTION
Formanyyearselectronicinstrumentshavebeeneasilyidentifiedproducts.Althoughtheyrangedinsizeandfunctionality,theyalltendedtobebox-shapedobjectswithacontrolpanelandadisplay.Stand-aloneelectronicinstrumentsareverypowerful,expensiveanddesignedtoperformoneormorespecifictasksdefinedbythevendor.However,theusergenerallycannotextendorcustomizethem.Theknobsandbuttonsontheinstrument,thebuilt-incircuitry,andthefunctionsavailabletotheuser,allofthesearespecifictothenatureoftheinstrument.Inaddition,specialtechnologyandcostlycomponentsmustbedevelopedtobuildtheseinstruments,makingthemveryexpensiveandhardtoadapt.
WidespreadadoptionofthePCoverthepasttwentyyearshasgivenrisetoanewwayforscientistsandengi-neerstomeasureandautomatetheworldaroundthem.OnemajordevelopmentresultingfromtheubiquityofthePCistheconceptofvirtualinstrumentation.Avirtualinstrumentconsistsofanindustry-standardcomputerorworkstationequippedwithoff-the-shelfapplicationsoft-ware,cost-effectivehardwaresuchasplug-inboards,anddriversoftware—whichtogetherperformthefunctionsoftraditionalinstruments.Todayvirtualinstrumentationiscomingofage,withengineersandscientistsusingvirtualinstrumentsinliterallyhundredsofthousandsofappli-cationsaroundtheglobe,resultinginfasterapplicationdevelopment,higherqualityproductsandlowercosts.Virtualinstrumentsrepresentafundamentalshiftfromtraditionalhardware-centredinstrumentationsys-temstowardssoftware-centredsystemsthatexploitthecomputingpower,productivity,displayandconnectivitycapabilitiesofpopulardesktopcomputersandworksta-tions.
AlthoughPCandintegratedcircuittechnologiesexpe-riencedsignificantadvancesinthepasttwodecades,itis
thesoftwarethatmakespossiblebuildingvirtualinstru-mentsonthisfoundation.Engineersandscientistsarenolongerlimitedbytraditionalfixed-functioninstruments.Nowtheycanbuildmeasurementandautomationsys-temsthatsuitexactlytheirspecificneeds.
2THECONCEPTIONOFVIRTUALINSTRUMENT
Usuallyinstrumentationmanufacturersprovidespe-cificfunctionstogivenarchitectureandfixedinterfacesformeasuringdevices,andthuslimittheapplicationdo-mainofthesedevices.Inactualusemuchtimeisrequiredforadjustingthemeasuringrangeandforsavinganddoc-umentingtheresults.
Theadventofmicroprocessorsinthemeasurementandinstrumentationfieldsproducedrapidmodificationsofmeasuringdevicetechnology,soonfollowedbytheappearanceofcomputer-basedmeasurementtechniques.Conceptualmodelofearly-computerizedinstrumentationisgiveninFig.1.
Asingleusercontrolsthesystem,whichrunsexclu-sivelyonapieceofhardware.Thereisasinglecontrolstructure,whichisformedbythecombinationoftheuserandtheprogramthatcontrolsthemultipledevicesat-tachedtotheinstrumentationbus.Themainchallengesarethedevicecouplingandtheprogrammingmodels.Themeasurementconsistsofthreeparts,asshowninFig.2,acquisitionofmeasurementdataorsignals,conditioningandprocessingofanalysisofmeasurementsignalsandpresentationofdata.
Theconceptofvirtualinstrumentisfrequentlyusedinindustrialmeasurementpractice,butnotalwayswithpreciselythesamemeaning.Forsomepeople,virtualin-strumentsarebasedonstandardcomputersandrepre-sentsystemsforstorage,processingandpresentationof
∗DepartmentofMeasurement,SlovakUniversityofTechnology,Ilkoviˇcova3,81219Bratislava,Slovakia
c2004FEISTUISSN1335-3632
JournalofELECTRICALENGINEERING,VOL.55,NO.1-2,2004
51
PROGRAMUSERDEVICEDRIVERINSTRUMENTATIONBUSDEVICE1DEVICE2DEVICEnPROCESSFig.1.Conceptualmodelofearlycomputerizedinstrumentation
SIGNALSACQUISITIONANDINSTRUMENTCONTROLPRESENTATIONPROCESSINGORANALYSISFig.2.Thediagramofmeasurementprocess
ADDEDHARDWAREPCADDEDSOFTWARESIGNALGENERATIONDATAPROCESSINGDATAPRESENTATIONDATAACQUISITIONFig.3.Thegeneralconceptionofvirtualinstrument
measurementdata.Forothers,avirtualinstrumentisacomputerequippedwithsoftwareforavarietyofusesin-cludingdriversforvariousperipherals,aswellasanaloguetodigitalanddigitaltoanalogueconverters,representinganalternativetoexpensiveconventionalinstrumentswithanaloguedisplaysandelectronics.Bothviewsaremoreorlesscorrect.Acquisitionofdatabyacomputercanbeachievedinvariouswaysandforthisreasontheunder-standingofthearchitectureofthemeasuringinstrumentbecomesimportant.
AvirtualinstrumentcanbedefinedasanintegrationofsensorsbyaPCequippedwithspecificdataacquisi-tionhardwareandsoftwaretopermitmeasurementdataacquisition,processinganddisplay.
AvirtualinstrumentcanreplacethetraditionalfrontpanelequippedwithbuttonsanddisplaybyavirtualfrontpanelonaPCmonitor.Virtualinstrumentsarea
meansofintegrationofthedisplay,controlandcentral-izationofcomplexmeasurementsystems.
Industrialinstrumentationapplications,however,re-quirehighrates,longdistances,andmulti-vendorin-strumentconnectivitybasedonopenindustrialnetworkprotocols.
Inordertoconstructavirtualinstrumentitisnec-essarytocombinethehardwareandsoftwareelementswhichshouldperformdataacquisitionandcontrol,dataprocessinganddatapresentationinadifferentwaytotakemaximumadvantageofthePC.Itseemsthatinthefuturetherestrictionsofinstrumentswillmovemoreandmorefromhardware.SuchageneralconceptionofvirtualinstrumentationispresentedinFig.3.
ThevendorofvirtualinstrumentcanusetheserialcommunicationbasedonRS-232standardortheparallelcommunicationbasedonGPIBstandard(knownalsoasHP-IB,IEEE488.1-2orIEC625.1-2),PCbus,orVXI-bus(VMEeXtensionforInstrumentation).Themaincategoriesofvirtualinstruments:
a)Graphicalfrontpanelonthecomputerscreentocon-trolthemodulesorinstruments
a1)controlledmoduleisplug-inDAQboard,
a2)controlledinstrumentisbasedonGP-IBboard,a3)controlledinstrumentisconnectedviaserialport,a4)controlledinstrumentisVXI-board(orsystem).b)Graphicalfrontpanelwithnophysicalinstrumentsatallconnectedtothecomputer.Instead,thecomputeracquiresandanalysesthedatafromfilesorfromothercomputersonanetwork,oritmayevencalculateitsdatamathematicallytosimulateaphysicalprocessoreventratherthanacquiringactualrealworlddata.TothePCconnectionsaccordingtopointa)thefol-lowingprocessmeasuringdevicesareattached:–Sensors
–GP-IBinstruments–Serialinstruments–VXIinstruments
Thisstructureisaresultofinternationalstandardizationallowingmorefreedominusingboardsandinstrumentsfromvariousmanufactures.
Themainrepresentativefeaturesofvirtualinstru-mentsdescribingtheirfunctionalityarefollowing:
–Enhancingtraditionalinstrumentfunctionalitywithcomputers;
–Openingthearchitectureofinstruments;
–Widespreadrecognitionandadoptionofvirtualinstru-mentsoftwaredevelopmentframeworks.
3BASICCOMPONENTSOFVIRTUALINSTRUMENTS
Thebasiccomponentsofallvirtualinstrumentsin-cludeacomputerandadisplay,thevirtualinstrumentsoftware,abusstructure(thatconnectsthecomputerwiththeinstrumenthardware)andtheinstrumenthard-ware.
52
V.Smieˇsko—K.Kov´aˇc:VIRTUALINSTRUMENTATIONANDDISTRIBUTEDMEASUREMENTSYSTEMS
PCDAQGP-IBSERIALMXIBOARDBOARDPORTBOARDSENSORS„SERIAL“INSTRUMENTSGP-IBVXIINSTRUMENTSINSTRUMENTSPROCESFig.4.StructureofthePC-basedinstrumentationhardware
3.1ComputerandDisplay
Thecomputerandthedisplayaretheheartofvirtualinstrumentsystems.Thesesystemsaretypicallybasedonapersonalcomputerorworkstationwithahigh-resolutionmonitor,akeyboard,andamouse.Itisimpor-tantforthechosencomputertomeetthesystemrequire-mentsspecifiedbytheinstrumentationsoftwarepackages.RapidtechnologicaladvancementsofPCtechnologyhavegreatlyenhancedvirtualinstrumentation.MovingfromDOStoWindowsgavetoPCusersthegraphi-caluserinterfaceandmade32-bitsoftwareavailableforbuildingvirtualinstruments.Theadvancesinprocessorperformancesuppliedthepowerneededtobringnewap-plicationswithinthescopeofvirtualinstrumentation.Fasterbusarchitectures(suchasPCI)haveeliminatedthetraditionaldatatransferbottleneckofolderbuses(ISA).ThefutureofvirtualinstrumentationistightlycoupledwithPCtechnology.3.2Software
Ifthecomputeristheheartofthevirtualinstrumentsystems,thesoftwareistheirbrain.Thesoftwareuniquelydefinesthefunctionalityandpersonalityofthevirtualinstrumentsystem.Mostsoftwareisdesignedtorunonindustrystandardoperatingsystemsonpersonalcom-putersandworkstations.Softwareimplementedcanbedividedintoseverallevels,whichcanbedescribedinahierarchicalorder.
Registerlevelsoftware
Register-levelsoftwarerequirestheknowledgeofinnerregisterstructureofthedevice(DAQboard,RS232in-strument,GP-IBinstrumentorVXImodule)forenteringthebitcombinationtakenfromtheinstructionmanualinordertoprogrammeasurementfunctionsofthede-vice.Itisthehardestwayinprogramming.Theresultingprogramisstronglyhardwaredependentanditisrarelyexecutableonsystemswithdifferenthardware.
Driverlevelsoftware
Oneofthemostimportantcomponentsinmeasure-mentsystemstodayisthedevicedriversoftware.Device
driversperformtheactualcommunicationandcontroloftheinstrumenthardwareinthesystem.Theyprovideamedium-leveleasy-to-useprogrammingmodelthaten-ablescompleteaccesstocomplexmeasurementcapabili-tiesoftheinstrument.
Inthepastprogrammersspentasignificantamountoftimewritingthissoftwarefromscratchforeachinstru-mentofthesystem.Today,instrumentdriversaredeliv-eredasmodular,off-the-shelfcomponentstobeusedinapplicationprograms.Severalleadingcompaniesformed(in1988)theInterchangeableVirtualInstrument(IVI)Foundation.TheIVIFoundationwasformedtoestablishformalstandardsforinstrumentdriversandtoaddressthelimitationsoftheformerapproaches.High-leveltoolsoftware
Currentlythemostpopularwayofprogrammingisbasedonthehigh-leveltoolsoftware.Witheasy-to-usein-tegrateddevelopmenttools,designengineerscanquicklycreate,configureanddisplaymeasurementsinauser-friendlyform,duringproductdesign,andverification.Themostknown,populartoolsareasfollows:
•LabVIEW(LaboratoryVirtualInstrumentEngineer-ingWorkbench)—isahighlyproductivegraphicalpro-gramminglanguageforbuildingdataacquisitionandin-strumentationsystems.Tospecifythesystemfunction-alityoneintuitivelyassemblesblockdiagrams—anat-uraldesignnotationforengineers.Itstightintegrationwithmeasurementhardwarefacilitiesrapiddevelopmentofdataacquisition,analysisandpresentationofsolutions.•LabWindows/CVI(CforVirtualInstrumentation)—isaWindowsbased,interactiveANSICprogrammingenvironmentdesignedforbuildingvirtualinstrumenta-tionapplications.Itdeliversadrag-and-dropeditorforbuildinguserinterfaces,acompleteANSICenvironmentforbuildingtestprogramlogic,andacollectionofauto-matedcodegenerationtools,aswellasutilitiesforbuild-ingautomatedtestsystemsandmonitoringapplicationsoflaboratoryexperiments.ThemainpowerofCVIliesinthesetoflibraries.
•HPVEE(Hewlett-Packard’sVisualEngineeringEn-vironment)—allowsgraphicalprogrammingforinstru-mentationapplications.ItisakindofVisualEngineeringEnvironment,aniconicprogramminglanguageforsolv-ingengineeringproblems.Italsoprovidesanopportunitytogather,analyzeanddisplaydatawithoutconventional(text-based)programming.
•TestPoint—isaWindowsbasedobject-orientedsoft-warepackagethatcontainsextensiveGPIBinstrumentandDAQboardsupport.Itcontainsanovelstate-of-theartuserinterfacethatiseasytouse.Objects,called“stocks”areselectedanddraggedwithamousetoawork
JournalofELECTRICALENGINEERING,VOL.55,NO.1-2,2004
53
area(panel).Logicflowiseasilyestablishedwithapointanddragactionlist.TestPointtakesadvantageofeveryMicrosoftWindowsfeatures.
•MeasurementStudio—isameasurementtoolfordataacquisition,analysis,visualizationandInternetconnec-tivity.ThisdevelopmenttoolhelpsyoubuildyourtestsystembyintegratingintoyourexistingMicrosoftcom-piler.MeasurementStudioprovidesacollectionofcon-trolsandclassesdesignedforbuildingvirtualinstrumen-tationsystemsinsideVisualBasicorVisualC++.WithMeasurementStudioyoucanconfigureplug-indataac-quisitionboards,GPIBinstruments,andserialdevicesfrompropertypageswithoutwritinganycode.Withuserinterfacecomponentsyoucanconfigurereal-time2Dand3Dgraphs,knobs,meters,gauges,dials,tanks,ther-mometers,binaryswitches,andLEDs.WithpowerfulIn-ternetcomponents,youcansharelivemeasurementdataamongapplicationsviatheInternet.
SCPI—Standardcommandsforprogrammableinstruments
SCPIisnotasoftwaretoolasareformersystems,butitisaneffectiveaidenablingeasystandardisedcontrolofprogrammableinstruments.SCPIdecreasesdevelopmenttimeandincreasesareadabilityoftestprograms.SCPIprovidesaneasyunderstandablecommandset,guaran-teesawell-definedinstrumentbehaviourunderallcondi-tions,whichpreventsunexpectedinstrumentbehaviour.AlthoughIEEE488.2isusedasbasisofSCPI,itdefinesprogrammingcommandsthatwecanusewithanytypeofhardwareorcommunicationlink.Ithasanopenstruc-ture.TheSCPIConsortiumcontinuesinaddingcom-mandsandfunctionalitytotheSCPIstandard.
Real-timeandembeddedcontrolhasbeenlongthedomainofspecialisedprograms.Advancesinindustry-standardtechnologiesincludingmorereliableoperatingsystems,morepowerfulprocessorsandcomputer-basedreal-timeengineeringtoolsareintroducingnewlevelsofcontrolanddeterminismtovirtualinstrumentation.Thispresentsnewopportunitiesforscientiststotakeonin-creasinglysophisticatedreal-timeandembeddeddevelop-ment.SoftwarescalesacrossdevelopmentonthePCintodevelopmentinreal-timeandembeddedapplications.Sci-entistsandengineerscanmoveintonewapplicationareaswithoutasteeplearningcurvebecausethesoftwareitselfevolvestoincorporateemergingcomputertechnologies.3.3InterconnectBuses
Fourtypesofinterconnectbusesdominatetheindus-try:theserialconnection(serialport),theGPIB,thePCbusandVXIbus.
Serialport.SerialcommunicationbasedonRS-232standardisthesimplestwayofusingacomputerinmea-surementapplicationsandcontrolofinstruments.SerialcommunicationisreadilyavailableviatheserialportofanyPCanditislimitedindatatransmissionrateanddis-tance(upto19.2Kbytes/sec,recently115Kbytes/sec,
and15m)anditallowsonlyonedevicetobeconnectedtoaPC.
GPIB.Itwasthefirstindustrystandardbusforconnect-ingcomputerswithinstrumentation.AmajoradvantageofGPIBisthattheinterfacecanbeembeddedontherearofastandardinstrument.Thisallowsdualuseoftheinstrument:asastand-alonemanualinstrumentorasacomputer-controlledinstrument.Becauseofthisfea-ture,thereareawidevarietyofhigh-performanceGPIBinstrumentstochoosefrom.TheGPIBoffersaflexiblecablethatconnectsaGPIBinterfacecardinthecom-putertoupto15instrumentsoveradistanceofuptotwentymeters.Theinterfacecardcomeswithsoftwarethatallowstransmissionofcommandstoaninstrumentandreadingofresults.EachGPIBinstrumentcomeswithadocumentedlistofcommandsforinitiatingeachfunc-tion.Typically,thereisnoadditionalsoftwaredeliveredwiththeinstrument.GPIBhasamaximumdatarateof1Mbytes/sandtypicaldatatransfersarebetween100and250Kbytes/s.Itdependsontheresponseofthemea-suredsubject.
PC-bus.WiththerapidacceptanceoftheIBMper-sonalcomputerintestandmeasurementapplications,therehasbeenacorrespondinggrowthofplug-ininstru-mentationcardsthatareinsertedintospareslots.How-ever,high-accuracyinstrumentsrequiresignificantcir-cuitboardspacetoachievetheirintendedprecision.Be-causeofthelimitedprintedcircuitboardspaceandcloseproximitytosourcesofelectromagneticinterference,PCbusinstrumentstendtobeoflowerperformancethanGPIBinstrumentsbutalsooflowercost.ManyaresimpleADCs,DACs,anddigitalI/Ocards.PCbusinstrumen-tationisbestsuitedforcreatingsmall,inexpensiveacqui-sitionsystemswheretheperformanceisnotofparamountimportance.Sincethesecardsplugdirectlyintothecom-puterbackplaneandcontainnoembeddedcommandin-terpreterasfoundinGPIBinstruments,personalcom-puterplug-incardsarenearlyalwaysdeliveredwithdriversoftwaresothattheycanbeoperatedfromapersonalcomputer.Thissoftwaremayormaynotbecompati-blewithothervirtualinstrumentsoftwarepackages,soitisrecommendedtocheckwiththevendorsbeforehand.Mostdataacquisitionboardsaremultifunctional,ietheyacceptbothanalogueanddigitalsignals.Theseplug-indataacquisitionboardsgainwiderandwideracceptanceduetotheirlowpriceandhighflexibilityobtainedfromtheassociatedsoftware.
VXIbus.Inthelateeighties,theVMEeXtensionforInstrumentation(VXI)standardallowedcommunicationamongunitswithtransferover20Mbytes/secondbe-tweenVXIsystems.VXIinstrumentsareinstalledinarackandarecontrolledby,andcommunicatedirectlywith,aVXIcomputer.TheseVXIinstrumentsdonothavebuttonsorswitchesfordirectlocalcontrolanddonothavelocaldisplaytypicalintraditionalinstruments.Itisanopen-systeminstrumentarchitecturethatcom-binesmanyoftheadvantagesofGPIBandcomputerbackplanebuses.VXIbusinstrumentsareplug-inmod-ulesthatareinsertedintospeciallydesignedcardcages
54
V.Smieˇsko—K.Kov´aˇc:VIRTUALINSTRUMENTATIONANDDISTRIBUTEDMEASUREMENTSYSTEMS
GPIBControllerToanotherGPIBinstrumentVXIMainframeGPIBINSTINSTRAMVXI#1#...INSTCPU2#3Fig.5.AVXIbussystemcontrolledbyGPIB
VXIMainframe
PC
INSTINSTRAM
T#1
...#2
...INSTINS#3#4
Fig.7.AVXIbussystemcontrolledbyanembeddedVXIbus
computerinsertedintothemainframe
knownas“mainframes”.Mainframesincludepowersup-plies,aircoolingequipmentandbackplanecommunica-tionforthemodules.TheVXIbusisuniqueinthatitcombinesacomputerbackplanebasedontheVME-busforhigh-speedcommunicationandoffersaqualityEMCenvironmentthatallowshigh-performanceinstrumenta-tionsimilartothatfoundinGPIB.Asaresult,muchmorecompactmeasuringsystemscanbebuilt.
TherearethreewaystocommunicatebetweenthecomputerandtheVXIbusinstruments.
a)ThefirstmethodisbyusingGPIB.Inthiscase,aGPIBtoVXIbusconvertermoduleispluggedintotheVXIbusmainframeandastandardinterfacecablecon-nectsitandtheGPIBinterfacecardinthecomputer.TheadvantagesanddisadvantagesofthistechniqueareverysimilartoapureGPIBdesign.Thissystemtendstobeeasytoprogram,butdataspeedsarelim-itedtoGPIBspeeds.However,becausetheinternaldataspeedswithintheVXIbusmainframecanexceed10Mbytes/s,oftenahigh-speedapplicationissolvedbylocalhigh-speedacquisitionandprocessingoccur-ringwithinthemainframeandhighlevelresultstrans-fertothecomputeroverGPIB.Figure5showsanex-ampleofVXIbussystemusingGPIB.
b)Thesecondtechniqueistouseahigher-speedinter-connectbusbetweentheVXIbusmainframeandthecomputer.Themostcommonimplementationofthisisahigh-speedflexible-cableinterfaceknownasMXIbus.AsinGPIB,anMXIbusinterfacecardandsoftwareareinstalledonthecomputerandacableattachesittoanMXIbustoVXIbusconvertermoduleintheVXIbusmainframe.MXIbusisessentiallyanimplementationoftheVXIbusonaflexiblecable.Thismeansthatthe
MXIVXIMainframeUNKINSTINSTRAMINSTCPUMXI#1#2...#3VXIFig.6.AVXIbussystemcontrolledoverahigh-speedMXIbus
cable
conversionstoVXIbusaresimpleandfast,bringingMXIbusperformancewithinafactorof2orsoofna-tiveVXIbusspeeds.TheadvantageofMXIbusisthatitallowstheuseofoff-the-shelfcomputerstocommu-nicatewithVXIbusinstrumentsataspeedconsider-ablyhigherthanGPIB.AdisadvantageisthattheMXIbuscablecanbethickandunwieldy,andthereissomelossofdata-transferbandwidthduetothecon-version.Figure6showsanexampleVXIbussystemusingMXIbus.
c)ThethirdwayistoinsertpowerfulVXIbuscomputersdirectlyintotheVXIbusmainframe.VXIbuscomput-erstendtoberepackagedversionsofindustrystandardpersonalcomputersandworkstationsthatrunindus-trystandardoperatingsystemsandsoftware.Thead-vantageofthistechniqueisthatitpreservesthefullcommunicationsperformanceofVXIbus.Thedisad-vantageisthatthechoiceofVXIbuscomputerswillalwaysbeasubsetofthechoiceofstandardindustrycomputers.VXIbuscomputertechnologywilltypicallylagbehindtheperformanceoftheindustryasawhole,offerfeweralternativeconfigurationsandbepricedatapremiumduetoitslowervolume.Figure7showsanexampleVXIbussystemusinganembeddedcomputer.3.4InstrumentHardware
Theprecedingsubsectiononinterfacesalsotouchesontheattributesfoundineachoftherespectiveinstrumenthardwareproducts.Onenoteisworthtoberepeated:Virtualinstrumentationnevereliminatestheinstrumenthardwarecompletely.Tomeasuretherealworldtherewillalwaysbesomesortofmeasurementhardware,sensor,transducerandconditioningcircuit,butthephysicalformfactorofthisinstrumentationmaycontinuetoevolve.
4DISTRIBUTEDMEASUREMENTSYSTEMS
Thepresenttrendininterconnectedmeasurementsys-temsistoextendtheareacoveredbytheinterconnectedsystemsinthegeographicalscale.Thissetsafurtherlimit
JournalofELECTRICALENGINEERING,VOL.55,NO.1-2,2004
55
FILETERMINALTERMINALTERMINALSERVER123LANCONTROLLERCONTROLLERCONTROLLERCONTROLLERGPIBDAQRS232VXIMXIGPIBRS232ININSTSTINSTRUMENTINSTRUMENTINSTRUMENTRRMXIU123UMEM...NENVXITT45Fig.8.Blockdiagramofdistributedmeasurementsystembased
onLAN
DISPLAYFILESFTPINTERNETDATAEXPLORERSOCKETURLCONTROLLFig.9.ThearchitectureofadistributedsystembasedonInternet
totheuseofsuchsystems.Asinthecaseoflargeandcom-plexplants,astructurednetworkedmeasurementsystemcanbeadoptedbyscalingitsusetothegeographicalarea.Thegeographicalprocesstobemonitoredandcontrolledispartitionedintocellsthatcanbedealtwithbyasin-gleprocessingunitoragroupoflocallyconnectedunits.Geographicallydistributedunitsareconnectedbyageo-graphicalcomputernetworkintoadistributedmeasure-mentsystem.Inthiscasecommunicationdelaysusuallycannotbeneglected.Thisisevenmorerelevantifthetraf-ficinthecomputernetworkisnotnegligibleduetothenumberofcomputersconnectedandtheamountofcom-munications,especiallyifapubliccomputernetworkisusedtorealisetheinterconnectionsamongthemeasuringprocessingunits.
Itseemsthatinthenearfuturelocalnetwork(LAN)canbeconsideredasakindofmeasurementbus,fromtheviewpointofmeasurementandcontrolsystems.AtypicalexampleofsuchasystemincludingvariousvirtualinstrumentsispresentedinFig.8.Itcanbeconsideredasafirststeptoawider,Internetbasedtechnology.Inthelastfewyearsasurprisinglyrapidgrowthoffastandreliablecommunicationnetworkshasallowedaneasyinterchangeofinformationandcommandsbetweencom-putersbothconnectedtolocalnetworksandconnectedtofarawaysiteofwideareanetworks(WAN),suchastheInternet.Thus,networkservicesandprogrammableinstrumentationnowpermitthedevelopmentofmeasure-mentlaboratoriesdistributedonawidegeographicalareaandsimultaneouslyavailabletoseveralusersvariouslylo-catedintheterritory.
CommonInternet-basedsoftwarecanbeusedtopro-videeasydatamigrationbetweenvariouscommunication
pathways.Multi-computerprocessingsystemsareeffec-tiveincreatingcomplexsystemsbyovercominglimita-tionsofasinglecomputerconcernedwiththeoverallcom-putingpowerorthenumberofsignalstobeacquiredandprocessed.
StandardsoftwarelanguagessuchasCandJavacanbeusedwithoff-the-shelfdevelopmenttoolstoimplementtheembeddednetworknodeapplicationsandtheweb-basedapplicationsrespectively.InternetbasedTCP/IPprotocols,Ethernettechnologyand/orDataSocketscanbeusedtodesignthenetworkinginfrastructure,Fig.9.DataSocketisasoftwaretechnologyforWindowsthatmakessharingallmeasurementsacrossanetwork(remoteWebandFTPsites)aseasyaswritinginformationtoafile.ItusesURLstoaddressdatabythesamewayweuseURLinaWebbrowsertospecifyWebpages.DataSocketincludedwithanysoftwaretoolisidealwhensomeonewishestocompletecontroloverthedistributionofthemeasurementbutdoesnotwanttolearntheintricaciesoftheTCP/IPdatatransferprotocols.
Inalltypesofnetworkedanddistributedmeasurementsystemspresentedabove,real-timeoperationandcon-straintsarecriticalissuestobeconsideredduringsystemdesigntoensurethecorrectsystemoperation.
Withdistributedmeasurementsystemonecantakere-motemeasurements,distributeaprogram’sexecution,orpublishmeasurementdataovertheInternet.Theevolvedhardwareandsoftwaretechnologiesprovideuserswiththetoolstheyneedforeasybuildingofapowerfuldis-tributedsystem.
Bypublishingyourmeasurementorautomationap-plicationovertheInternetreal-timedatacanbeviewedbyusersonremotecomputers.Withapplicationdevelop-mentenvironmentsWebserversareavailablesoyoucanpublishauserinterfacetotheInternet.Withoutanyad-ditionalprogrammingyoucanpublishyourfrontpanelasaWebpagesousersacrosstheInternetcanviewthesepanelsrunningwithinanystandardWebbrowser.
Applicationshaveoneormoremeasurementnodesphysicallyseparatedfromthecomputerthatiscon-trollingthemandcollectingdata.Remotemeasure-mentapplicationsoftenrequirehighspeedstreamingofdataandseveralclientsconnectedtoasinglemeasure-ment.ForstreamingmeasurementdataacrossanetworkDataSocketprovidesyouwithaneasy-to-useinterface.UsingDataSocketyoucaneasilystreamanykindofmea-surementdataacrossalocalareanetworkortheInter-nettoseveralclientprograms.BothWebserversandDataSocketprovideasimpleandconvenientwaytopub-lishyourmeasurementdata.
5CONCLUSIONS
Virtualinstrumentationisfuelledbyever-advancingcomputertechnologyanditoffersthepowerofcreatinganddefiningsomeone’sownsystembasedonanopenframework.Thecombinationofcomputerperformance,graphicalsoftware,andmodularinstrumentationhasled
56
V.Smieˇsko—K.Kov´aˇc:VIRTUALINSTRUMENTATIONANDDISTRIBUTEDMEASUREMENTSYSTEMS
[13]TAN,K.K.—SOH,C.Y.:InstrumentationontheInternet,
EngineeringScienceandEducationJournalIEE10No.2(2001),61–67.
[14]FERRERO,A.—PIURI,V.:ASimulationToolforVirtual
LaboratoryExperimentsinaWWWEnvironment,Proc.IEEEConf.onInstrumentationandMeasurementTechnology,St.Paul,Minnesota,USA,18–21May1998,1,102–107.
[15]SCPI:StandardCommandsforProgrammableInstruments,ver-sion1991.0,May1991.[16]ni.com/dvi.
ˇ´C,ˇK.—KAZICKA,ˇ[17]SMIESKO,V.—KOVAR.:VXI-busasa
ToolforDynamicTesting,Proc.Int.Conf.CATE93,Brno,1993,283–287.
ANSI/IEEEStd.488.1—1987,IEEEStandardDigitalInterfaceforProgrammableInstrumentation.
ANSI/IEEEStd.488.2—1987,IEEEStandardCodes,Formats,ProtocolsandCommonCommands.
ˇSMIESKO,V.:SomePropertiesofVXISysteminRelationtoHP-IB,ProceedingsPreciseMeasurementinArmy.Brno,1991,68–71.
VXI-busSystemSpecification,Revision1.3,Tektronix.
´SOVˇ´I.—SMIESKO,ˇˇONDRAA,V.—SETNICKA,V.:Contri-butiontotheEfficiencyofGPIBInstrumentation.In:Measure-mentScienceReview.Vol.1,No.1,2001,59–62.
HELSEL,R.:VisualProgrammingforPHVEE,PrenticeHallPTR,1997.
HPVEEforWindowsUserManual,Hewlett-PackardCorp.,1993.
LabWindows/CVIUserManual,NationalInstr.Corp.,Austin1994.
TestPointDemoSystem,KeithleyInstruments,1992.
EREN,H.—NICHOLS,W.J.—WONGSO,I.:TowardsanInternet-BasedVirtual-WireEnvironmentwithVirtualInstru-mentation.IEEEInstrumentationandMeasurement,Confer-ence,Budapest,Hungary,May21–23,2001,817–820.
JASENEK,J.:SensorswithDistributedParametersontheBasisofPOTDR,JournalofElectr.Eng53No.9/s(2002),101-106,PresentedatXVI-thInternationalConferenceEMFM,Bratislava,Sept.11-13,2002.
ˇ´SOVˇ´I.—SMIESKO,ˇKAZICKA,R.,ONDRAA,V.:Improving
totheemergenceofvirtualinstruments,whicharesub-stantiallydifferentfromtheirphysicalancestors.Virtual
instrumentsaremanifestedindifferentformsrangingfromgraphicalinstrumentpanelstocompleteinstrumentsystems.Modularinstrumentationbuildingblocksarebe-comingmoreprevalentintheindustryandareallow-inguserstodevelopcapabilitiesunattainableusingtra-ditionalinstrumentarchitectures.Despitethesechangeshowever,themeasurementparadigmremainsunaltered.Thismightbetheproperplatformforthenewdevelop-ment.
Thetrendinvirtualinstrumentationincreasinglyinte-gratesthemeasurementsystemsintomorecomplexmoni-toringandcontrolsystemsdistributedoverdifferent(pos-siblygeographicallydistant)locations.Theremotein-strumentationcontrolisbecomingpopularsincethenet-workshavebecomereliableandworldwideandalmosteverynewinstrumentembedsprogrammablecapabilities.Thepasthasshownthatunlessproperstandardsareavailable,diversificationduetoad-hocsolutionswillslowtheprogressinthefield.Thus,itseemsaproperchal-lengeforthefuturetostartthinkingofstandardizationofvirtualinstrumentationanddistributedmeasurementsystems.
References
[18][19][20]
[21][22]
[23][24][25][26][27]
[1]CRISTALDI,L.—FERRERO,A.—PIURI,V.:Programmable
Instruments,VirtualInstrumentsandDistributedMeasure-mentSystems.IEEEInstrumentation&MeasurementMaga-zine,Sep.,1999,20–27.
[28]
[2]BAICAN,R.—NESCULESCU,D.:AppliedVirtualInstrumen-tation,WITPress,Boston,2000.
[3]GOLDBERG,H.:WhatisVirtualInstrumentation?IEEE
Instrumentation&MeasurementMagazine,December2000,
[29]10–13.
theAT&MSParameters,J.ElectricalEngineering46No.7
[4]SPOEDLER,H.J.W.:VirtualInstrumentsandVirtualEn-(1995),261–2.
vironments.IEEEInstrumentation&MeasurementMagazine,
´SOVˇ´I.—SETNICKA,ˇˇ[30]ONDRAA,V.—SMIESKO,V.:Auto-Vol.2,1999,14–19.
thmatedInstrumentationApplication.In:12InternationalSci-ˇˇP.:MeasurementontheThreshold[5]SMIESKO,V.—KUKUCA,
entificConference“R´adioelektronika2002”,Bratislava,SlovakoftheThirdMillennium,J.ElectricalEngineering52No.7-8
Republic,14–16May2002,182–185.
(2001),240–243.
[6]TRUCHARD,J.:FutureofVirtualInstrumentation,NIWeek,Received17October20032002.
ViktorSmieˇsko(Prof,Ing,CSc)wasborninZlatovce,[7]DES-JARDIN,L.:VirtualInstrumentsandtheRoleofSoft-ware.ElectronicInstrumentHandboock.McGraw-Hill,1995,Czechoslovakia,in1948.Hegraduatedwithhonorsin1970
44.1–44.14.andreceivedtheCSc(PhD)degreeattheFacultyofElec-[8]GALWAS,B.A.—RAK,R.J.:VirtualLaboratory—aFu-tricalEngineering,SlovakTechnicalUniversity.CurrentlyisturePartoftheNewWeb-BasedModelofUndergraduateEngi-FullProfessorforInstrumentationattheFacultyofElectricalneeringStudiesDevelopedbyWarsawUniversityofTechnology.EngineeringandInformationTechnology,SlovakUniversityJointIMEKOTC-1&XXXIVMKMConference2002,Wroclaw,
ofTechnology.Hisresearchinterestsareintheareasofauto-8-12September,2002.
matedinstrumentationandelectromagneticcompatibility.
[9]McCONNELL,E.:TheFutureofVirtualInstrumentation.Sen-KarolKov´aˇc(Doc,Ing,CSc)wasborninBratislava,Slo-sors,July1997,237–240.
vakiaonJune9,1952.HereceivedtheIng(MSc)degreewith
[10]EPPLER,B.:ABeginnersGuidetoSCPI,Addison-Wesley
honorsin1976andtheCSc(PhD)degreeinelectricalengi-PublishingCompanyInc.,1999.
neeringfromtheFacultyofElectricalEngineeringoftheSlo-[11]BERTOCCO,M.—FERRARIS,F.—OFFELLI,C.—PARVIS,
M.:AClient-ServerArchitectureforDistributedMeasurementvakTechnicalUniversity,Bratislava.Since1976hehasbeenSystems,IEEETransactionsonInstrumentationandMeasure-withtheDepartmentofMeasurementoftheFacultyofElec-tricalEngineeringandInformationTechnology,SlovakUni-ment47No.5(1998),1143–1148.
[12]LEE,K.B.—SCHNEEMAN,R.D.:Internet-BasedDistributedversityofTechnology,nowasAssociateprofessorforElectric
MeasurementSystemandControlApplication,IEEEInstru-Measurement.Hisresearchinterestsareintheareaofcom-mentation&MeasurementMagazine,June1999,23–27.putermodellingandmeasurementofESDpulseprocesses.
因篇幅问题不能全部显示,请点此查看更多更全内容