纷纭教育
您的当前位置:首页5. 等差(比)数列通项问题的研究(2)

5. 等差(比)数列通项问题的研究(2)

来源:纷纭教育
专题:等差(比)数列通项问题的研究

一、问题提出

问题:若已知数列an的前n项和为Sn,且Sn二、思考探究

2探究1:已知数列{an}的各项都为正数,且对任意nN*,都有an1anan2k(k为常数).

(a1an)n,求证:数列an为等差数列. 2(1)若k(a2a1)2,求证:a1,a2,a3成等差数列; (2)若k=0,且a2,a4,a5成等差数列,求

a2的值; a1(3)已知a1a,a2b(a,b为常数),是否存在常数,使得anan2an1对任意nN*都成立?若存在.求出;若不存在,说明理由.

探究2:设非零数列{an}满足anan2an1(1)2n1(nN).

2(1)当0时,求证:anmanman,(nm, 且m,nR).

(2)当a11,a22,3,求证:an2an3an1.

2q证明:(1)当0时,anan2an1,所以{an}是等比数列,设公比为,

22n22则anmanma1qnm1a1qnm1a1 ,得证 q(a1qn1)2an2a23(2)由条件知a37,

a12n1 由anan2an得 (1)122n12an2anan2anananan13(1)an1an1anan1an22n2ananaaaa1[an3(1)]1n1n1n1n1,

an1anan1anan

所以数列{an2anaaaa}是常数列,则n2n313, an1an1a2整理即得an2an3an1.

探究3:已知数列{an}中,a11,a2a,且an1k(anan2)对任意正整数都成立,数列{an}的前n项和为Sn. (1)若k1,且S20152015a,求a; 2(2)是否存在实数k,使数列{an}是公比不为1的等比数列,且对任意相邻三项

am,am1,am2按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;

(3)若k1,求Sn. 2k解:(1)

11an1(anan2),时,所以数列{an}是等差数列, 此an2an1an1an,221n(n1)(a1), 2时首项a11,公差da2a1a1,数列{an}的前n项和是Snn故2015a20151120152014(a1),即a12014(a1),得a1; 22(2)设数列{an}是等比数列,则它的公比qa2a,所以amam1,am1am,am2am1, a1mm1 ①若am1为等差中项,则2am1amam2,即2aa②若am为等差中项,则2amam1am2,即2am1am1,解得:a1,不合题意;

amam1,化简得:a2a20,

am1ama2 解得a2(舍1);km1m12;

amam2aa1a5③若am2为等差中项,则2am2am1am,即2am1amam1,化简得:2a2a10,

1am1ama2 解得a;k; m1m122amam2aa1a5 综上可得,满足要求的实数k有且仅有一个,k (3)k2; 511则an1(anan2), 22an2an1(an1an),an3an2(an2an1)an1an,

当n是偶数时, Sna1a2a3a4 na1a(a1a2)a(3a4)an(n1an )nn(a1a2)(a1), 22当n是奇数时,

Sna1a2a3a4 a1na1aa1(a2a3)a()an(1an )n4a5n1n1n1(a2a3)a1[(a1a2)]1(a1),n1也适合上式, 222n11(a1),n是奇数2 综上可得,Sn.

n是偶数n(a1),2

探究4:已知数列an,其前n项和为Sn. (1)若an是公差为d(d0)的等差数列,且式;

(2)若数列an对任意m,nN*,且mn,都有列.

解:(1)设bnSnn,则bn2Snn,

2,3时,b12S1n=a11, 当n1,Snn也是公差为d的等差数列,求数列an的通项公

2Smnaan,求证:数列an是等差数amanmmnmn① ② ③ ④ ⑤

(b1d)2S222a1d2, (b12d)2S333a13d3, 联立①②③消去a1,得(b1d)22b12d, (b12d)23b123d,

④3⑤得:b122b1dd20,则b1d,

将⑥代入⑤解出d1(d=0舍去), ………………… 2分

2从而解得a13,所以an1n5. ……………… 4分

424此时,bnSnn1n对于任意正整数n满足题意. …… 6分

2(2)因为对任意m,nN*,mn,都有在①中取mn1,同理

2Smnaaamanmn, ① mnmn2S2n1aaan1ann1n2an1, ②… 8分 2n112S2n1aa4a2an1, ③…10分 an2an1n2n1n22n1334an22an1,即2an23an1an10, 3由②③知,2an11即an2an2an1(an1an12an), …………… 12分

2②中令n1,a3a12a20,

从而an2an2an10,即an2an1an1an,………… 14分 所以,数列an成等差数列. ………………… 16分

探究5:已知数列{an}的各项都为正数,Sn=111

++…+(n∈N*).

a1+a2a2+a3an+an+1

(1)若数列{an}是首项为25,公差为2的等差数列,求S100; (2)若Sn=

n

,求证:数列{an}是等差数列.

a1+an+1

解:(1)由题意得,

aaia201a11i1,所以S100=5…

22aiai1

探究6:设数列a1,a2,,an,中的每一项都不为0.证明:an为等差数列的充分必要条件是:对任何nN,都有

三、真题链接

1.(2005年江苏高考题)设数列an的前n项和为Sn,已知a11,a26,a311,且

111n a1a2a2a3anan1a1an15n8Sn15n2SnAnB,nN,其中A,B为常数.

(1)求A,B的值;

(2)证明:数列an是等差数列;

(3)对任意正整数m,n,比较5amn与aman1的大小. 解:(1)由a11,a26,a311得S11,S27,S318 ∵5n8Sn15n2SnAnB,nN

令n1,AB3S27S128

令n2,2AB2S312S248

解得:A20,B8 …………………3分 (2)由(1)5n8Sn15n2Sn20n8,nN 即5n(Sn1Sn)8Sn12Sn20n8,nN 即5nan18Sn12Sn20n8,nN ① 5n1an8Sn2Sn120n18,n2 ②

①-② 5nan15nan3an8an120,n2 …………………5分 即5n8an15n3an20,n2 ③ ∴5n13an5n8an120,n3④

③-④5n8an15n3an5n13an5n8an10,n3

∴5n8an1an12an0,n3 …………………7分 ∴an1an12an,n3

又∵a11,a26,a311,即a1a32a2 ∴an1an12an,n2

∴an是以1为首项,5为公差的等差数列. …………………10分 (3)由(2)an5n4 即比较5amn与

aman1的大小

2∵5amn55mn425mn20

aman1aman2aman1amanaman15m45n45mn7

2 即

aman125mn15mn9 …………………12分

2则5amnaman125mn2025mn15(mn)915(mn)29

2∵m1,n1 ∴5amn∴5amn

{bn}、{cn}满足:bnanan2,cnan2an13an22.(2006年江苏高考题)设数列{an}、(n=1,2,3,…),

aa115(mn)29302910 …………………15分

aa1,即5aaa1 …………………16分

2mn2mnmnmn证明{an}为等差数列的充分必要条件是{cn}为等差数列且bnbn1(n=1,2,3,…)

证明:必要性. 设{an}是公差为d1的等差数列,则

bn1bn(an1an3)(anan2)(an1an)(an3an2)d1d10

所以bnbn1(n1,2,3,)成立.

又cn1cn(an1an)2(an2an1)3(an3an2) d12d13d16d1(常数)(n=1,2,3,…), 所以数列{cn}为等差数列.

充分性,设数列{cn}是公差d2的等差数列,且bnb1(n=1,2,3,…). 证法一:

cnan2an13an2,cn2an22an33an4.

①-②得cncn2(anan2)2(an1an3)3(an2an4)

bn2bn13bn2,,

cncn2(cncn1)(cn1cn2)2d2 bn2bn13bn22d2, ③

从而有

bn12bn23bn32d2. ④

④-③得

(bn1bn)2(bn2bn1)3(bn3bn2)0. ⑤ bn1bn0,bn2bn10,bn3bn20,

∴由⑤得bn1bn0(n1,2,3,).

由此 不妨设bnd3(n1,2,3,),则anan2d3(常数). 由此cnan2an13an24an2an13d3, 从而cn14an12an23d34an12an5d3, 两式相减得an1cn2(an1an)2d3, 因此an1an11(cn1cn)d3d2d3(常数)(n1,2,3,), 22所以数列{an}是等差数列.

证法二:令Anan1an,由bnbn1知anan2an1an3,

从而an1anan3an2,即AnAn2(n1,2,3,). 由cnan2an13an2,cn1an12an23an3 得cn1cn(an1an)2(an2an1)3(an3an2),即

An2An13An2d2. ⑥

由此得An22An33An4d2. ⑦ ⑥-⑦得(AnAn2)2(An1An3)3(An2An4)0. ⑧ 因为AnAn20,An1An30,An2An40, 所以由⑧得AnAn20(n1,2,3,). 于是由⑥得,

4An2An1An2An13An2d2 ⑨

从而

2An4An14An12An2d2. ⑩

由⑨和⑩得4An2An12An4An1,故An1An,即

an2an1an1an(n1,2,3,),

所以数列{an}是等差数列.

四、反思提升

五、反馈检测

1. 已知数列an满足a11,a23,an23an12an(nN*).

(1)证明:数列an1an是等比数列;(2)求数列an的通项公式;

(3)若数列bn满足4b114b21...4nb1(an1)bn(nN*),证明bn是等差数列.

1an1. 22. 设数列{an}的前n项和为Sn,且Sn1Sn(n1)an1(1)若数列{an}是等差数列,求数列{an}的通项公式; (2)设a26,求证:数列{an}是等差数列. 解:(1)∵Sn1Sn(n1)an111an1 ∴2Snnan1an1 22又∵{an}是等差数列,设公差为d,则

n(n1)12na1dn(a1nd)[a1(n1)d]1

22∴dn(2a1d)ndn(a122d1)n(a1d)1…………4分 22d2ada1a1212∴ ∴ ………………6分

d41(ad)1012∴an4n2……8分

12Saa11212注:由解得a12,d4,但没有证明原式成立,给4分.

12S2aa12322(2)∵2Snnan1∴2Sn1(n1)an1an1① 21an11② 2

①—②得2nan1(2n3)anan10(n2)………10分 ∴(2n2)an2(2n5)an1an0(n1)

两式相减得(2n2)an2(4n5)an1(2n4)anan10(n2)…………12分 ∴(2n2)an2(4n4)an1(2n2)anan12anan10(n2) ∴(2n2)[an22an1an]an12anan1(n2)…………14分 ∵a26 ∴可得a12,a310 ∴a32a2a10 ∴an22an1an0 ∴{an}是等差数列……………16分

3. 设各项均为正数的数列an的前n项和为Sn,已知a11,且(Sn1)an(Sn1)an1对一切nN*都成立.

(1)若λ = 1,求数列an的通项公式; (2)求λ的值,使数列an是等差数列.

解:(1)若λ = 1,则(Sn11)an(Sn1)an1,a1S11.

又∵an0,Sn0, ∴∴

Sn11an1, ………………… 2分 Sn1anS1a2a3aS21S31n1n1, S11S21Sn1a1a2an化简,得Sn112an1.① ………………… 4分

∴当n≥2时,Sn12an.② ②  ①,得an12an, ∴

an12(n≥2). ………………… 6分 an ∵当n = 1时, a22,∴n = 1时上式也成立,

∴数列{an}是首项为1,公比为2的等比数列, an = 2n1(nN*). …………………8分 (2)令n = 1,得a21.令n = 2,得a3(1)2. ………………… 10分

要使数列an是等差数列,必须有2a2a1a3,解得λ = 0. ………………… 11分 当λ = 0时,Sn1an(Sn1)an1,且a2a11. 当n≥2时,Sn1(SnSn1)(Sn1)(Sn1Sn), 整理,得Sn2SnSn1Sn1Sn1,从而

Sn1Sn1, ………………… 13分

Sn11SnS1S3S4SS21S31nn1, S11S21Sn11S2S3Sn化简,得Sn1Sn1,所以an11. ……………… 15分 综上所述,an1(nN*),

所以λ = 0时,数列an是等差数列. ………………… 16分

24. 已知无穷数列{an}满足:a11,2a2a1a3,且对于任意nN*,都有an0,an1anan24.

(1)求a2,a3,a4的值;(2)求数列{an}的通项公式.

2解:(1)由条件,nN*,an1anan24,

2令n1,得a2=a1a34.又2a2a1a3,且a11,

2易求得a23,a35.再令n2,得a3=a2a44,求得a47.

2anaa422(2)1nn2an2an1an1an3anan22an2an1an34an2(anan2)an1(an1an3)为常数数列

an1an3anan2aan2} {nan2an1an1anan2a1a32.anan22an1. 数列{an}为等差数列.

an1a2又公差da2a12an2n1.

5. 数列an,bn,cn满足:bnan2an1,cnan12an22,nN*.

(2)若数列b,c都是等差数列,求证:数列a从第二项起为等差数列;

(3)若数列b是等差数列,试判断当ba0时,数列a是否成等差数列?证明你的结论.

(1)若数列an是等差数列,求证:数列bn是等差数列;

nnnn13n证明:(1)设数列an的公差为d,∵bnan2an1,

∴bn1bn(an12an2)(an2an1)(an1an)2(an2an1)d2dd, ∴数列bn是公差为d的等差数列. (2)当n2时,cn1an2an12,∵bnan2an∴an1an∴an1,

bncn1bc1,∴an1n1n1, 22bn1cnbncn1bn1bncn1cn, 2222∵数列bn,cn都是等差数列,∴(3)数列an成等差数列.

bn1bncn1cn为常数,∴数列an从第二项起为等差数列. 22解法1 设数列bn的公差为d,∵bnan2an1,

∴2nbn2nan2n1an1,∴2n1bn12n1an12nan,…,2b12a122a2, ∴2nbn2n1bn12b12a12n1an1,

设Tn2b122b22n1bn12nbn,∴2Tn22b12nbn12n1bn, 两式相减得:Tn2b1(222n12n)d2n1bn,

即Tn2b14(2n11)d2n1bn,∴2b14(2n11)d2n1bn2a12n1an1, ∴2n1an12a12b14(2n11)d2n1bn2a12b14d2n1(bnd), ∴an12a12b14d(bnd),

2n12a12b14d2a12b14d(bd)b1, 233222a12b14db1a30,∴2a12b14d0, 32令n2,得a3∵b1a30,∴

∴an1(bnd),∴an2an1(bn1d)(bnd)d, ∴数列an(n2)是公差为d的等差数列, ∵bnan2an1,令n1,a12a2a3,即a12a2a30, ∴数列an是公差为d的等差数列.

解法2 ∵bnan2an1,b1a30,令n1,a12a2a3,即a12a2a30, ∴bn1an12an2,bn2an22an3,

∴2bn1bnbn2(2an1anan2)2(2an2an1an3),

∵数列bn是等差数列,∴2bn1bnbn20,∴2an1anan22(2an2an1an3),

∵a12a2a30,∴2an1anan20,∴数列an是等差数列.

因篇幅问题不能全部显示,请点此查看更多更全内容